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ABSTRACT: Wastewater-based epidemiology (WBE) is increasingly being
recognized as a powerful tool for detecting and monitoring SARS-CoV-2 trends
at a population level. This study looked to extend the use of WBE to explore the
effectiveness of nonpharmaceutical interventions (NPIs) that have been used in
response to COVID-19 and compare the results to the effect of such interventions
on COVID-19 hospitalizations. A data-driven approach demonstrated that trends of
SARS-CoV-2 RNA in wastewater, from Amsterdam and Utrecht (The Nether-
lands), precede hospitalizations by at least 3−9 days. Additionally, the effect of
NPIs can be seen in wastewater and hospitalizations after 20 and 24 days,
respectively. Changepoint analysis indicated that the closure of schools and
universities significantly reduced the level of SARS-CoV-2 RNA in wastewater and
COVID-19 hospitalizations. Regression modeling suggested the stay-at-home policy
is an effective intervention for reducing the level of SARS-CoV-2 RNA in
wastewater, whereas the closure of workplaces significantly reduced hospitalizations
in both Dutch cities. This study demonstrates how WBE can be used to inform public health decisions and anticipate future strain on
healthcare facilities in major cities but also indicates a need for higher temporal resolution of wastewater sampling.

KEYWORDS: COVID-19, SARS-CoV-2, wastewater-based-epidemiology, nonpharmaceutical interventions, regression, changepoint,
modeling

■ INTRODUCTION

On January 31, 2020, the coronavirus disease (COVID-19)
was declared a global health emergency.1 Since then, there has
been an ongoing global struggle to contain the spread of this
disease. Given that vaccinations for COVID-19 were not
widely available until 2021, most efforts to limit the spread of
the virus came in the form of nonpharmaceutical interventions
(NPIs), and in future, NPIs will likely still play an important
role. Many countries adopted NPIs that aim to reduce human
contact or identify and subsequently segregate infected
individuals. However, NPIs are associated with high societal
and economic costs. Investigations into the effectiveness of
NPIs against SARS-CoV-2 can help determine which ones are
essential to implement and which can be foregone in a bid to
limit interruption to everyday life.
At present, most information about NPI effectiveness has

come from national confirmed case data, death totals, and
hospitalizations. Confirmed cases generally derive from RT-
PCR testing,2 which is per se a highly accurate approach and
allows track-and-trace systems to identify people for isolation
but does rely on testing capacity and willingness to get tested.
Recent modeling studies that have used reported cases and
deaths have produced conflicting results as to the effectiveness
of interventions. Some studies suggest the stay-at-home order

is the most successful at reducing SARS-CoV-2 prevalence,
while others find the closure of schools and workplaces is more
effective.3,4

Despite improvements in testing capacity, PCR testing can
be a biased surveillance method. This can be due to seasonal
events altering the number of swab tests dispensed weekly and
reporting delay differing over time and regions.5 Furthermore,
PCR testing often misses asymptomatic COVID-19 cases,
estimated to make up 17−20% of infections, and presympto-
matic cases,6,7 each of which allows transmission of the virus.
Thus, there is increased uncertainty surrounding the estimated
prevalence of SAR-CoV-2 from PCR-confirmed cases.
Hospitalizations, as a measure, do not come with the same
limitations as PCR testing because the admissions criteria have
remained more consistent throughout the pandemic. Addi-
tionally, this measure can be used to determine the strain
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placed on healthcare facilities. However, the delay between
symptom onset and admission is generally greater than the
period between symptom onset and a positive test, so this
measure is not ideal for real-time assessment of COVID
incidence.8−11

It has been suggested that wastewater-based epidemiology
(WBE), which is increasingly being incorporated into national
COVID-19 surveillance schemes,12,13 is an effective method for
monitoring the amount of SARS-CoV-2 circulating in
cities.13,14 A significant proportion of COVID-19 cases,
including pre- and asymptomatic individuals, have been
found to shed SARS-CoV-2 RNA in their stools (27.4−
55.1% according to Parasa et al.15), and consequently, SARS-
CoV-2 RNA can be detected in sewage samples.16 Given that
almost the entire population will use toilets, and that these are
connected to centralized wastewater treatment plants
(WWTPs) in developed countries, sewage samples taken at
WWTPs can provide an accurate measure of the true
circulation of the virus within a population. There is also
evidence to suggest that sewage surveillance is sensitive enough
to detect the occurrence of COVID-19 cases days before these
are reported to or detected by the authorities. For example,
SARS-CoV-2 RNA was detected in the wastewater of
Amersfoort, The Netherlands, 6 days before the first
COVID-19 cases were reported in the city.16 Due to
uncertainties in the SARS-CoV-2 RNA shedding rate,17−19 it
is at present difficult to quantify the number of infectious
individuals. However, the SARS-CoV-2 concentration in
wastewater has been used to indicate trends in COVID-19
circulation in major cities.20,21

Only a few intervention studies have currently used
wastewater data to evaluate the effectiveness of NPIs
throughout the COVID-19 pandemic.22,23 Hillary et al.22

discovered a negative correlation between SARS-CoV-2 gene
copies and the time period after implementation of a national
lockdown in March 2020 in five of six U.K. sites. In contrast,
Wurtz et al.23 found no significant correlation between the
second lockdown and circulation of SARS-CoV-2 in Marseille’s
wastewater. However, these studies22,23 were each carried out
over independent time frames of fewer than 6 months, and
with minimal interventions assessed, so little comparison can
be made between studies.

Considering this, the study presented here aimed to utilize
WBE data collected in two Dutch cities to investigate whether
significant changes in SARS-CoV-2 circulation occurred in
response to implementation or relaxation of individual NPIs.
This study also aimed to determine the delay period between
the implementation or relaxation of individual NPIs and
respective changes in the SARS-CoV-2 concentration in
wastewater. However, it is also important to know how well
these results translated to hospital admissions and, thus, how
wastewater surveillance can be used to help manage the strain
on healthcare facilities. Therefore, these investigations were
repeated using hospital admissions.

■ MATERIALS AND METHODS

Description of Data Sets. Daily positive COVID-19
clinical tests and hospitalizations in Utrecht and Amsterdam,
The Netherlands, were retrieved from the Environmental
Systems Research Institute (ESRI) NL COVID-19 Hub.24

These data were extracted between March 2, 2020, and May
25, 2021. Both daily positive tests and daily hospitalizations
were smoothed for analysis by applying a seven-day centered
rolling average.
Wastewater data were sourced from the KWR Water

Institute. Wastewater samples (i.e., 24 h flow-proportional
composites) were collected once per week at the influent of the
WWTPs serving the cities of Utrecht and Amsterdam. The
populations served by the WWTPs in Utrecht and Amsterdam
were taken from the database of the Central Bureau of
Statistics25 and were 267 886 and 669 401, respectively. RT-
qPCR was used to quantify SARS-CoV-2 RNA in the form of
N2 gene copies per milliliter of sewage water (GC/mL). The
method used is identical to the one described in detail by
Medema et al.16 and involved the use of four primers, namely,
the N1−N3 regions of the nucleocapsid (N) gene as well as
the envelope protein (E) gene of SARS-CoV-2. F-Specific
RNA phages were used, and reported recoveries of the
purification and concentration steps were 73 ± 50% (n =
16).16 The recovery efficiency of both RNA extraction and
qRT-PCR of the method used was 30.4 ± 22.3% and was
determined using Dengue virus as an internal control.16

Rainfall, tourism, and commuters fluctuated during the
pandemic, which disrupts estimates of the dilution or number

Figure 1. Timeline of COVID-19 nonpharmaceutical interventions (NPI’s) considered in this analysis, between March 2020 and May 2021.
Legend: 0, no action; 1, recommended intervention; 2, partial intervention; 3, full intervention.

ACS ES&T Water pubs.acs.org/estwater Article

https://doi.org/10.1021/acsestwater.2c00071
ACS EST Water XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acsestwater.2c00071?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.2c00071?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.2c00071?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.2c00071?fig=fig1&ref=pdf
pubs.acs.org/estwater?ref=pdf
https://doi.org/10.1021/acsestwater.2c00071?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of people contributing to the viral load in sewers. Therefore,
quantification of human biomarker CrAssphage (GC/mL)
from these WWTPs was also used to normalize the human
fecal contribution in the wastewater, as previously done in
WBE studies.19,22 Quantification of CrAssphage was performed
on duplicate nucleic acid extracts using the specific CrAssphage
CPQ_064 qPCR method described by Stachler et al.26 and
recently implemented by Heijnen et al.27 All RT-PCR analyses
were run in duplicate, and the average is used here.
Details of the dates and level of NPI policies introduced in

The Netherlands between March 5, 2020, and May 21, 2021,
were obtained from the Oxford COVID-19 Government
Response Tracker (OxCGRT) database.28 These data were
checked against the National Institute for Public Health and
the Environment (RIVM) COVID-19 archives29 to ensure
consistency. From this database, the policies selected for this
analysis are school and university closures (c1), closure of
workplaces (c2), cancellation of public events (c3), gathering
restrictions (c4), closure of public transport (c5), stay-at-home
order (c6), testing policy (h2), tracing policy (h3), and
facemask policy (h6). Public information campaigns were
excluded because this policy remained consistent throughout
the pandemic, according to the OxCGRT database, so changes
in wastewater signal or hospitalizations could not be attributed
to this policy. Additionally, adherence to internal and
international travel restrictions is likely a culmination of the
stay-at-home order and other policies, such as reduced public
transport. Therefore, in an effort to prevent overestimation of
significance, it is assumed that the stay-at-home order also
accounts for travel restrictions.
Each of these NPIs, within the OxCGRT database, originally

consisted of multiple levels of implementation; however, the
leveling criteria were inconsistent across policies. To allow a
fair comparison between NPIs, the levels of implementation
were altered to no interventions (0), recommended
intervention (1), partial intervention (2), and full intervention
(3), as shown in Figure 1. c1 was adapted to include school
holidays as a full intervention measure. c6 was adapted to
include the period between December 15, 2020, and January
22, 2021, as a partial intervention given the strong advice to
stay at home. The curfew period, introduced in January, was
included as a full intervention within the stay-at-home policy.
Given that COVID-19 interventions are implemented and

relaxed as a direct response to rising and falling cases,
respectively, many independent interventions occur at the
same time with similar intensity (Figure 1). Therefore,
collinearity between interventions was investigated and
variables that highly correlate with other variables were
removed from models to avoid misinterpretation of results.
Hierarchical Clustering. Despite the removal of some

variables due to high collinearity, there is still potential for the
significance of NPIs to be overinterpreted due to the
implementation of other NPIs at similar times. Therefore, on
the basis of the temporal clustering method of Liu et al.,30

hierarchical clustering of NPIs was performed to assess which
interventions are temporally similar. A Gower distance
measure was used to calculate the distance between NPIs.
When it comes to interpretation of results, the statistical
significance of NPIs is interpreted keeping in mind the
significance of other NPIs within the same cluster.
Multiple Linear Regression. To determine the effect of

NPIs on SARS-CoV-2 infection, multiple linear regression
models were established for both Amsterdam and Utrecht,

with selected NPIs as independent variables. Two separate
models with different dependent variables were created for
each city to compare the effect of NPIs on both the SARS-
CoV-2 concentration in wastewater and COVID-19 hospital-
izations. Given that SARS-CoV-2 prevalence increases and
decreases gradually, it was noted that there is a significant serial
correlation in residuals for which the linear regression model
needs to account. For this, autocorrelation function (ACF) and
Partial autocorrelation function (PACF) plots were used to
determine the correlation structure of the linear regression
models. A generalized least-squares model was fit to the data
using maximum likelihood to allow a correlation structure to
be incorporated.
Taking into account the time it takes for the population to

fully adhere to new rules, and the incubation time, we
compared generalized least-squares models with temporal lag
periods of 1−21 days (extended to 28 days for the
hospitalizations model) to determine the most appropriate
delay period. These models were assessed using a comparison
of the Akaike and Bayesian information criterion (AIC/BIC)
and the log likelihood. Stepwise backward variable selection
was subsequently carried out on the chosen linear regression
model. The variables selected in this process were validated
using stepwise forward variable selection and univariate
analysis.

Changepoint Analysis. Changepoint analysis was used in
this study to model the temporal patterns of both COVID-19
hospitalizations and N2/CrAssphage between March 2020 and
May 2021 in Amsterdam. This analysis aims to identify
significant changes in the trajectory of COVID-19 and
determine whether the date of these changes can be linked
to modifications in the Dutch government’s nonpharmaceut-
ical response. For this analysis, piecewise linear regression
models were fitted with COVID-19 hospitalizations and SARS-
CoV-2 concentration in wastewater as the dependent variable
in each respective model, and the date as the independent
variable.
BIC was used to choose the most appropriate number of

changepoints for both models. Rough dates of peaks and
troughs of each time series were selected as priors for the
changepoints in both models. Sensitivity analysis was
performed by using alternative priors for estimation of the
changepoints, and these were consistent. Ultimately, the priors
that produced a model with the lowest BIC were used.
The estimated breakpoints and 95% confidence intervals

were evaluated against the timing of implementation and
relaxation of NPIs by assessing whether any change in COVID-
19 NPI policy occurred up to 24 days prior to each
changepoint. If NPIs were repeatedly associated with a change
in COVID-19 measurements, this would provide strong
evidence of the effectiveness of the individual NPI.

■ RESULTS AND DISCUSSION
Collinearity and Clustering. The testing capacity policy

and facemask policy have perfect positive collinearity; thus,
these variables cannot be considered independent (Figure S1).
Therefore, the facemask policy was removed from the linear
model analysis, but the interpretation of the testing policy will
be considered jointly with the introduction of facemasks if
significant. The reduced public transport policy also has a high
positive collinearity (−0.78) with the stay-at-home policy and
a high negative collinearity (−0.89) with the track-and-trace
policy. This is logical considering there is little need for public
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transport if individuals are advised to stay home, and tracing is
more crucial when individuals are permitted to travel
throughout the country. Due to this, the public transport
intervention was removed from the multiple linear regression
analysis.
Hierarchical clustering of the remaining NPIs in the analysis

produced three significant clusters (Figure S2). This
demonstrates that the closure of schools and universities
(c1) and stay-at-home (c6) policies are temporally very similar,
which is corroborated by a moderately high correlation value
between the two (Figure S1). Closure of workplaces (c2),
testing (h2), and track and trace (h3) are all within the same
cluster and are, therefore, temporally more similar to each
other than any other measure. This is understandable between
testing and tracing because it is easier to implement more
stringent tracing policies if widespread testing is available.
Lastly, public event restrictions (c3) and gathering restrictions
(c4) form a cluster that is intuitive because events cannot
occur while strong gathering restrictions are in place. These
clusters will be used for interpretation of final multiple linear
models.
Cross-Correlation. Cross-correlation analysis was carried

out to consolidate the time delay between the SARS-CoV-2
concentration in wastewater and COVID-19 hospitalizations in
both cities. This analysis illustrates that in Amsterdam,
wastewater concentrations are highly predictive of hospital-
izations occurring 5−9 days later (Figure 2). In Utrecht,
wastewater concentrations are most predictive of hospital-
ization occurring 3−5 days later (Figure 2). This result is
corroborated by Peccia et al.,31 who similarly found that

wastewater concentrations preceded hospitalization by 1−4
days.
Shedding of RNA has been found, via nasal swabs, to peak

approximately on the day of symptom onset, and previous
evidence has suggested there is a median delay of 3−10.4 days
between symptom onset and hospitalizations, dependent on
age and vulnerability status.9 It is, therefore, unsurprising that
trends observed in wastewater foreshadow hospitalizations.
However, no concrete data with regard to fecal shedding have
been published. Assuming fecal shedding peaks similarly at
symptom onset, the delay period wastewater signal and
hospitalization may be longer than suggested in this analysis,
but due to weekly sampling of wastewater, the number of
measurements that could be compared within the cross-
correlation analysis was minimized.

Multiple Linear Regression. For both Amsterdam and
Utrecht, ACF and PACF plots of the SARS-CoV-2
concentration in wastewater demonstrate that an autoregres-
sion (AR) (1) term is the most appropriate term to use in the
generalized least-squares model to account for the correlation
structure of residuals (Figure S3). In contrast, an Autore-
gression moving-average (ARMA) (2,2) term was deduced to
be most appropriate for both hospitalization models by trial
and error. A comparison of temporal lags using goodness-of-fit
measures for the wastewater models in Amsterdam found that
a temporal lag of 20 produced the lowest AIC/BIC values and
the highest log likelihood (Table S1). The Utrecht model also
indicated that a temporal lag of 20 days was preferable to all
models with lags of >10 days (Table S2). Therefore,
wastewater models with a lag value of 20 were examined

Figure 2. Cross-correlation function (CCF) plots indicating the optimum lag for normalized N2 counts in wastewater to predict hospitalizations in
Amsterdam (top) and Utrecht (bottom).
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further. A temporal lag of 24 days was optimal for both
Amsterdam and Utrecht hospitalizations (Tables S3 and S4).
These chosen temporal lags corroborate the cross-correlation
analysis that suggested a time delay of at least 3 days between
the SARS-CoV-2 concentration in wastewater and COVID-19
hospitalizations (Figure 2). These results also suggest an
approximate 3 week period between NPIs and observable
changes in the wastewater concentration and COVID-19
hospitalizations. Similarly, the work of Stockdale et al.32

suggests a time delay of up to 3 weeks before impacts of NPIs
on COVID-19 cases can be detected.
Because there is a lag between day of infection and the onset

date, at the time of the NPI installation, even if they are fully
adhered to, there will be first a further increase in the number
of infections as a result of these infections that already
occurred. In addition, these will infect household members,
creating a further lag. Thus, the observable effect is often
delayed beyond the incubation period. Additionally, Stockdale
et al.32 also suggested that changes in response to relaxation of
measures take even longer to exhibit, so this should also be
considered. It is also highly likely that individual interventions
will have different time delays based on how much human
behavior must change to comply. Closure of schools and
universities should have a shorter delay period than most other
interventions because adherence to this policy is less flexible
and, thus, contact between children and young adults is
instantly minimized. This can be observed from the change-
point analysis, whereby it took less than a week on four
occasions, for this type of intervention to initiate a change in

the SARS-CoV-2 concentration in wastewater and COVID-19
hospitalizations (Figure 3).
In terms of backward variable selection of the regression

models, it is important to note that while selected variables
may demonstrate a correlation with COVID-19 incidence, this
does not necessary indication causation. Interpretation as such
should be corroborated with existing knowledge. Backward
variable selection of the wastewater models both retained the
stay-at-home policy (c6), testing capacity (h2), and track-and-
trace policy (h3) as shown in Table 1. The stay-at-home policy
has a statistically significant negative correlation with SARS-
CoV-2 in wastewater in both Amsterdam (p = 0.0001) and
Utrecht (p = 0.0143). The track-and-trace policy also has a
statistically significant negative correlation with SARS-CoV-2
in wastewater in Amsterdam (p = 0.0031) and Utrecht (p =
0.0302). Table 1 demonstrates that the Utrecht model also
retained closure of workplaces (c2), which has a negative
correlation with SARS-CoV-2 in wastewater but is not
statistically significant (p = 0.0655). The testing capacity
policy has a significant positive correlation with SARS-CoV-2
in wastewater in both Amsterdam (p = 0.0007) and Utrecht (p
= 0.0158). This NPI is in the same cluster as the track-and-
trace policy, which has a significant negative correlation, so
these results should be treated with caution. Given the perfect
positive collinearity with testing capacity (Figure S1), the
enforcement of facemasks is also correlated with an increase in
the SARS-CoV-2 concentration in wastewater.
A forward variable selection approach for the Amsterdam

wastewater model selected the same NPIs, as well as gathering

Figure 3. Linear piecewise models fitted to daily hospital admissions in the city of Amsterdam (green line, left y-axis) and N2 gene concentrations
normalized through CrAssphage concentrations (red line, right y-axis). Changepoints are highlighted as black round markers, and the error bar
indicates the 95% confidence interval around each changepoint.

Table 1. Backward Variable Selection of Each Linear Regression Modela

c1 c2 c3 c4 c6 h2 h3

Amsterdam, N2/CrAssphage −/*** +/*** −/**
Utrecht, N2/CrAssphage −/ns −/* +/* −/*
Amsterdam, hospitalizations −/*** −/ns +/***
Utrecht, hospitalizations −/* −/ns +/***

aPlus and minus signs indicate the direction of the effect that each NPI has on the dependent variable (left). “ns” indicates the effect is not
significant (p > 0.05). Asterisks indicate that the NPI is significant: *p < 0.05, **p < 0.01, and ***p < 0.001.
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restrictions (c4), which has a positive correlation with SARS-
CoV-2 in wastewater. However, this variable is insignificant (p
= 0.5427), so backward variable selection is preferred. A
forward variable selection approach for the Utrecht wastewater
model included only stay at home (c6). Univariate analysis
supports the conclusion that the stay-at-home policy has a
significant negative correlation with the SARS-CoV-2 concen-
tration in wastewater in both cities (Table S5). Univariate
analysis also indicates that closure of schools has a significant
negative correlation with wastewater load in Utrecht (Table
S5). Given that the closure of schools and the stay-at-home
order are within the same cluster, it is possible that the effect of
school closures is being masked by the stay-at-home policy
(Table 1). Regardless, there is strong evidence to suggest
cluster 1 significantly decreases the SARS-CoV-2 concentration
in wastewater.
Within the hospitalization models for both cities, backward

and forward variable selection methods both selected closure
of workplaces (c2), gathering restrictions (c4), and track-and-
trace (h3) policies to include in the final model (Table 1). The
closure of workplaces has a significantly negative correlation
with COVID-19 hospitalization in both Amsterdam (p <
0.0001) and Utrecht (p = 0.0351). The gathering restriction
policy also has a negative correlation with hospitalizations in
Amsterdam (p = 0.1065) and Utrecht (p = 0.1212), but it is
not a significant factor in either model. However, it is a highly
significant factor within univariate analysis of hospitalizations
(Table S5). This univariate significance may be an effect of
some collinearity (0.58) with workplace closures (Figure S1),
given its significance in both reduced hospitalization models
and univariate analysis (Table S5). Lastly, the track-and-trace
policy has a significant positive correlation with hospital-
izations in Amsterdam (p < 0.0001) and Utrecht (p < 0.0001).
Again, the track-and-trace policy is in the same cluster as
closure of workplaces (c2), so this result should be treated with
caution. Univariate analysis came to a similar conclusion
whereby track and trace (h3) and testing (h2) have significant
positive correlations with COVID-19 hospitalizations in both
cities (Table S5).
While the results between Amsterdam and Utrecht are

consistent, the results of the Utrecht model are generally
associated with wider 95% confidence intervals and, thus,
higher associated uncertainty of conclusions (Figures S4−S7).
This may be because the city has almost half of the population
of Amsterdam; therefore, larger random variation is associated
with wastewater measurements, and small numbers of daily
hospitalizations can make effects of measures less noticeable.
Numerical scaling of interventions may lead to misinter-

pretation of results given that intensity levels are not equally
spaced in reality. While this approach was not possible within
multivariate analysis, univariate analysis of interventions using
labeled interventions instead was explored to validate results
(Figures S8−S11). This analysis supports the results presented
above whereby stay-at-home (c6) and track-and-trace (h3)
policies reduce the SARS-CoV-2 concentration in wastewater
(Figures S8 and S9). Additionally, Figures S10 and S11
support the conclusion that closure of workplaces (c2) and
gathering restrictions (c4) reduce COVID-19 hospitalizations.
Figures S9 and S10 also indicate that closure of schools (c1)
reduces hospitalizations. It should be noted that many NPIs
did not have four levels of implementation intensity, or if they
did, the distribution of data points at each level was highly

skewed, which decreased the level of confidence of estimates at
some levels. This will only improve as more data are collected.
This analysis provides evidence to suggest that a stay-at-

home order significantly reduces the SARS-CoV-2 concen-
tration in wastewater. However, this effect was not reflected in
the linear regression models of hospitalizations in either city.
After inspection of the two instances in which the stay-at-home
order was enforced, wastewater and hospitalization measure-
ments are much less closely aligned in December 2020 than in
April 2020. Hospitalizations experienced a much shallower
increase and subsequent decrease during the second wave.
This could be a factor in why the stay-at-home policy does not
appear to significantly reduce hospitalizations within regression
models.
The misalignment during the second wave between

wastewater signal and hospitalizations may be because more
young individuals became infected during the second wave and
the severity of the disease is reduced in young individuals.
Therefore, there was a high level of circulation of SARS-CoV-2,
but a smaller proportion of cases required hospitalizations. The
reduced severity in younger populations is a possible
explanation for why the closure of schools was insignificant
in both hospitalization models but was significant in univariate
analysis of wastewater models. However, this measure was also
instigated to reduce transmission between children and adults,
not only to reduce circulation among children.
Another measure that presented strong evidence of its

efficacy is the closure of workplaces, which includes retail,
hospitality, and leisure establishments, as well as offices. The
closure of workplaces was significant in three of the four
reduced linear regression models and had a negative effect in
all three (Table 1). From univariate analysis, this measure
seemed to be a particularly significant factor in reducing
hospitalizations in both cities, which could be explained by the
age demographic of the people that this measure affects. This
result is in line with many other NPI studies whereby 86%
found it to be an effective measure.33 The closure of
workplaces has sparked much debate due to the increasing
strain on the economy. Many governments, including the
Dutch government, introduced furlough schemes to subsidize
the loss of income to businesses and staff, but this is not a
sustainable long-term solution. The flexibility of this approach
as well as the notable reduction in hospitalizations makes this a
very effective measure. However, this interpretation is
reasonable only while a furlough is still in place; once this
scheme ends, adherence and the subsequent effectiveness are
likely to decrease substantially.34

Sufficient evidence was not found to demonstrate the effect
of gathering restrictions (c4) on the SARS-CoV-2 concen-
tration in wastewater for either city. Categorical univariate
analysis (Figure S9) even suggested a positive correlation
between this measure and the SARS-CoV-2 concentration in
wastewater in Amsterdam, particularly as measures increased
from “no action” to “recommended intervention”. This is in
contrast to the results of Brauner et al.,4 who used data from
only the first wave in early 2020. It is possible that the
effectiveness of this measure has since decreased as adherence
has waned.34 Gathering restrictions were found to have a
negative effect in the linear regression model of hospital-
izations in both cities, although the effect is insignificant. The
inclusion of gathering restrictions in the reduced hospital-
ization models may be because hospitalizations reflect the
situation among a subgroup of the population (mostly elderly
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and more vulnerable people), while wastewater is generalized.
Compliance with gathering restrictions may play a role here as
it has been demonstrated that older individuals have followed
the restrictions more stringently, possibly out of fear of
COVID-19 or respect for rules.35 Regardless, gathering
restrictions are an insignificant factor in all reduced models,
which suggests they have a limited impact on virus circulation.
Similarly, no substantial evidence in this analysis can be found
to support the effectiveness of public event bans (c3) in any
model. However, the lack of evidence in these two cities does
not mean that this measure is ineffective everywhere. There
will be differences in the number of public events and the
response to recommended cancellations in different localities,
so this should be considered when interpreting these data.
While the track-and-trace policy is associated with a decrease

in the SARS-CoV-2 concentration in wastewater in both cities,
this is not reflected in COVID-19 hospitalizations whereby a
positive association is found (Table 1). Increased testing and,
thus, also the enforcement of face masks due to the collinearity
of the measures (Figure S1) were also found to have a positive
association with both the SARS-CoV-2 concentration in
wastewater and COVID-19 hospitalizations. It is likely that
these positive associations are not the product of a causal
relationship but may be an effect of the parallel increase in
testing capacity with the increase during the second wave in
the winter. It may also be the result of negative collinearity
with other measures that have been relaxed.
Changepoint Analysis. As described in the methodology,

piecewise linear regression models were fitted to time series of
the SARS-CoV-2 concentration in wastewater and COVID-19
hospitalizations in Amsterdam. Both time series had high
adjusted R2 values of ∼0.85 when fitted with eight change-
points. Figure 3 highlights the temporal similarity in change-
point location between the two COVID-19 measures, which
indicates that eight events have occurred, causing significant
changes in COVID-19 hospitalization and wastewater signal.
Despite expectations, estimated dates of changepoints in the
wastewater measurements do not consistently precede
hospitalization changepoint dates. However, the date of the
lower 95% confidence interval of wastewater measurements
occurs before the date of the lower 95% confidence interval for
hospitalizations on almost every occasion (Table S6).
The two major changepoints and subsequent declines of

COVID-19 in late March and early April 2020 and late
December 2020 (Figure 3) cannot be attributed to a single
intervention but instead are the result of a combination of
multiple interventions. Between 1 and 3 weeks before the first
changepoint in both models (March 30 and April 3 for
wastewater and hospitalization measurements, respectively), all
public events were canceled, all schools and universities were
closed, some workplaces were closed, full gathering restrictions
were implemented, and a stay-at-home order was introduced
(Figure 1). Similarly, a combination of interventions came into
play on December 15 in response to rapidly rising infections,
including full closure of schools and universities, full closure of
non-essential workplaces, and a stay-at-home order (Figure 1).
This led to a steep decline in both circulation of SARS-CoV-2
in wastewater and hospitalizations after December 21.
While this analysis does demonstrate that the enforcement

of both stay-at-home orders coincides with subsequent steep
declines, it is easy to overestimate the impact of this measure.
This is because, on both occasions, the stay-at-home order has
been implemented in conjunction with full closure of schools

and universities and increased closure of workplaces. It is,
therefore, very difficult to evaluate this measure separately.
Other studies have considered this NPI only as an additional
measure to others already implemented and found that it had a
limited additional effect.4 It has been suggested that
compliance with the stay-at-home policy was reduced in
December 2020 compared to April 2020, when people were
still substantially more afraid of COVID-19.35 This poses the
question of whether an intervention can be considered
effective if the measure is too restrictive that the general
public can no longer adhere to it, now that fear of COVID-19
has diminished. Adherence is likely to become more fragile as
fear diminishes and immunity increases.34,35

Between the September 5 and 6, 2020, both measurements
experienced a changepoint whereby the level SARS-CoV-2 in
the community began to increase, particularly the concen-
tration in wastewater (Figure 3). Within 24 days before this
time point, only one relaxation of NPIs occurred and this was
the reopening of schools with distancing measures at the start
of September after school holidays (Figure 1). This event
increases the likelihood of transmission outside the home
between children and young adults, but also within the home
between children and potentially vulnerable adults, thus
explaining the rapid increase in both the wastewater
concentration and hospitalizations.
Again, when schools closed for school holidays around

October 17, both the SARS-CoV-2 concentration in waste-
water and hospitalizations experience a peak on October 19
and 22, 2020, respectively (Figure 3), and quickly decreased.
During this week, the transmission was briefly cut off, which
drastically reduces the number of cases. Further evidence in
support of school closures is provided after the February break
when the curfew was still in place. The trajectory of both the
SARS-CoV-2 concentration in wastewater and COVID-19
hospitalizations is estimated to have changed to an increasing
state on February 12 and 23, respectively (Table S6), only
once schools had reopened on February 7, 2021. These results
are consistent with a recent review in which 58% of studies
found the closure of schools to be associated with a reduced
number of cases.33

Given that hospitalizations experience shallower increases
when schools reopen, it could be argued that numbers of cases
among children are less concerning because symptoms are
usually mild and the strain on healthcare facilities is less
pronounced. Additionally, the closure of schools can negatively
affect the economy and the operations of healthcare facilities.
Therefore, in the future, it may be sensible to suggest that
schools should not be closed except in the most extreme cases
due to the lack of a strong association with hospitalizations. It
is important to note that the closure of different levels of
schools, including preschool, primary, secondary, and higher
education, could not be compared given the structure of the
OxCGRT data.28

At the beginning of December 2020, the SARS-CoV-2
concentration in wastewater and COVID-19 hospitalizations
began to increase again at a rate similar to that in September
(Figure 3). The only NPI to be linked to this changepoint is
the reopening of workplaces on November 22 (Figure 1). The
return to work for some individuals would have increased the
risk of transmission. Therefore, the subsequent increase in
COVID-19 cases in December could be attributable to the
reopening of workplaces. Together with the contribution to the
two major changepoints in April and late December, this
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analysis corroborates the evidence from the linear regression
models that the closure of workplaces is a particularly effective
policy. However, another factor that is likely to have
contributed to this sharp increase in cases over the winter is
worsening weather. It is well-known that respiratory diseases
are seasonal and infections are more common in the winter
months. Winter weather should, therefore, be considered to be
an additional driver for increasing numbers of cases between
September 2020 and February 2021.
The last changepoint was estimated to occur April 15 and

April 20, 2021, for the SARS-CoV-2 concentration in
wastewater and COVID-19 hospitalizations, respectively
(Table S6). However, the 95% confidence interval of the
wastewater changepoint is wide, spanning more than 5 weeks
on either side, and extending far beyond the hospitalization
changepoint, so this estimation is weak. No change in NPIs
occurred during the evaluation period for either measure, so
the subsequent decline in COVID-19 prevalence cannot be
credited to any NPI. However, vaccination of the population
against COVID-19 began on January 6 in The Netherlands,
and the level of vaccination has slowly increased since.29

Therefore, it is possible that this decreasing rate in both time
series can be attributed to increasing immunity to COVID-19.
The rollout of the vaccination began to pick up speed only in
March, so limited vaccination data were available at the time of
collection. Data on vaccinations and seropositivity results at
the municipal level could also not be extracted. However,
future research could extend this analysis to consider these
factors if immunity data at this finer spatial scale become
available.

■ CONCLUSION
The findings of this work show that the estimated change-
points of SARS-CoV-2 in wastewater throughout the pandemic
are associated with much higher uncertainty than hospital-
ization because of the infrequency of wastewater measure-
ments. Often samples were taken weekly, but frequently gaps
between measurements exceed 10 days, which is likely to have
reduced the accuracy of changepoint estimation. To
consolidate the delay between measurements and provide
accurate changepoints, higher temporal granularity of waste-
water sampling is needed. This will, however, increase costs
associated with wastewater surveillance, but the potential for
WBE to predict hospitalization trends earlier than is currently
possible could be considered invaluable.
While this study benefited from a long time period, the

transmission rate and, therefore, the relationship between cases
and hospitalizations are likely to have changed over the year
due to the dominance of different SARS-CoV-2 variants. This
study did not take into account data from different variants
measured in wastewater because at the time of analyses these
were not available. However, it is now possible to distinguish
among variants circulating in wastewater,27 so this could be
accounted for in future work by adding in an interaction term
between NPIs and a variable that represents the change in
variants. Future work would also hope to extend this research
to compare different countries. WBE is not implemented
universally to the scale that it currently is in The Netherlands,
so comparisons between countries are limited. While some
countries, such as the U.K., have used WBE to monitor SARS-
CoV-2,22 there is a chance of interlab variation in sampling
methodology and qPCR design that can make use of data from
different laboratories difficult. Standardized protocols have

been suggested,36 which would allow for comparative studies
of WBE.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsestwater.2c00071.

Figures S1−S11 and Tables S1−S5 (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Dragan Savic − KWR Water Research Institute, 430 BB
Nieuwegein, The Netherlands; Centre for Water Systems,
University of Exeter, Exeter EX4 4PY, United Kingdom;
orcid.org/0000-0001-9567-9041; Email: dragan.savic@

kwrwater.nl

Authors
Natalie Stephens − Department of Engineering, Mathematics
and Physical Sciences, University of Exeter, Exeter EX4 4PY,
United Kingdom

Frederic Béen − KWR Water Research Institute, 430 BB
Nieuwegein, The Netherlands; orcid.org/0000-0001-
5910-3248

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsestwater.2c00071

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Prof. Gertjan Medema for the valuable
input during the preparation of the manuscript.

■ REFERENCES
(1) World Health Organization. WHO Coronavirus (COVID-19)
Dashboard. 2021. https://covid19.who.int/ (accessed 2021-08-21).
(2) Corman, V. M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer,
A.; Chu, D. K.; et al. Detection of 2019 novel coronavirus (2019-
nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25 (3), 2000045.
(3) Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H. J. T.; Mellan, T.
A.; Coupland, H.; et al. Estimating the effects of non-pharmaceutical
interventions on COVID-19 in Europe. Nature 2020, 584 (7820),
257−61.
(4) Brauner, J. M.; Mindermann, S.; Sharma, M.; Johnston, D.;
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